MOUTH BACTERIA ALTER DIET
Bacteria inside your
mouth drastically change how they act when you're diseased, according to
research using supercomputers at the Texas Advanced Computing Center (TACC).
Scientists say these surprising findings might lead to better ways to prevent
or even reverse the gum disease periodontitis, diabetes, and Crohn's disease
Marvin Whiteley,
professor of molecular biosciences and director of the Center for Infectious
Disease at The University of Texas at Austin, led the study published in April
2014 in the journal mBio.
"What we were
trying to figure out," said Whiteley, "is how do these bacteria act
when you're healthy, and how do they act when they're in a diseased state. The
really big finding is that they do act very differently."
Bacteria share
nutrients, and one species will even feed on another as they constantly
interact. "The thing that we found in this paper," said Whiteley,
"is that this sharing, and how they interact with each other changes quite
drastically in disease than it does in health."
UT Austin researchers
used shotgun metagenomic sequencing, a non-targeted way to study the all the
genetic material of the bacterial communities. Whiteley and colleagues analyzed
the RNA collected with the Lonestar and Stampede supercomputers at TACC. They
were awarded computing allocations through the University of Texas System
Research Cyberinfrastructure initiative. The research was funded by grants from
the National Institutes of Health, administered by the National Institute of
Dental and Craniofacial Research.
It might come as a
surprise that microbes, mainly bacteria, outnumber human cells in our body by
10 to 1. And scientists have identified 10,000 different species of bacteria
that live inside each person. These microbial communities are collectively
known as the human microbiome. That's according to a five-year, $115 million
research effort that began in 2008 by the National Institutes of Health (NIH)
called the Human Microbiome Project.
"The easiest way
to think of it is just the collection of bacteria that are in or on your
body," Whiteley said. "We think of it as not only the bacteria, but
the genetic composition. What's their DNA? And from that we can infer what
these bacteria might be doing for us."
Whiteley's lab started
by isolating RNA from the plaque samples collected. Study co-author Keith
Turner, a postdoctoral researcher in Whiteley's lab, explained. "RNA, for
those who know about computers, is kind of like the RAM (random access memory),
the working memory of the cell." The RNA sample acts like a memory image
or 'core dump' to reveal the processes of the as-yet unknown bacterium it came
from. And unfortunately, said Turner, you can't get a full picture of the
activity because there are so many molecules in the sample.
"But what you
do," Turner explained, "is get what you can and profile it by
sequencing, using some recent technological advances. Then it's essentially a
search problem."
Turner searched a
metagenomic database, essentially a vast genetic clearing house sampled from
the environment instead of lab grown. He looked for matches at the NIH's Human
Microbiome Project. A match told what bacterium a gene came from in the sample,
and Turner tallied each match. "The more it's thinking about a certain
process, the more it seems to be important to it," said Turner. "The
shotgun approach, as you might imagine, is very computationally intensive,
which is why we turned to TACC for some of these problems."
How big were these
problems?
Turner and colleagues
chose 60 different species of bacteria to represent the total community. More
than 160,000 genes were analyzed, yielding 28 to 85 million reads of RNA
snippets, including about 17 million mRNA reads for each sample.
His main findings show
that bacteria act differently when one is healthy compared to when diseased.
"The main thing that they change when they go from health to disease is
that they change their metabolism," Whiteley said. In other words, a
species of bacteria that ate one thing, fructose for example, can switch to a
different kind of sugar to feed on if diseased.
"The kind of
thing that might have taken a desktop computer a week, two weeks to run we can
run at TACC in just a couple of hours," Turner said. "Stampede allows
us to use 6,400 desktop computers, all at the same time. There are a lot of problems
in biology that can benefit from the supercomputing approach."
Whiteley found
periodontitis interesting because it's one of the most prevalent diseases on
the planet. "It's an interesting disease, because the same bacteria that
are in your mouth when you're healthy are the same ones, more or less when
you're sick," he said.
"What our study
says is that it doesn't really matter what bacteria you have, because the
communities are acting very similarly," Whiteley explained. "So a
healthy community has this metabolism, no matter what the members are. And a
diseased community has a very different metabolism, no matter what the members
are. It's this conservation of a metabolic community. "
Whiteley compared
what's happening under our gums to an ecosystem in the African savannah. The
interactions among 'animals' is key. "You have lions, and you have
leopards, and wildebeest, and all of these animals that are there. If you look
at it as a whole community, it kind of makes sense. But if you were to only
take a one-acre plot out of the African savannah and look at it, it may not
make sense because there may not be a lion in that one acre. So trying to
understand interactions, you need to take a much larger, bigger context. And
that's what this study did," Whiteley explained.
According to science
results from the Human Microbiome Project, a shift to more harmful bacteria in
the community is linked to wide-ranging diseases such as periodontitis,
diabetes, and Crohn's disease.
Whiteley said his
research can help people by helping to develop biomarkers that predict if
someone's going to get sick. "Can you actually come up with a very quick
way to assess the behavior of the community quickly and say, are you on the
progression of moving from health to disease, and then provide some sort of
preventative measure when you get there," Whiteley explained.
Pathogenic bacterial
communities that rewired themselves to be harmful might also be rewired for
health. It's possible in theory, anyway, according to Whiteley.
"You can manipulate
bacterial populations numerically very easily. You feed them something else. So
you might be able to shift them back. These are some of the ideas that we've
been thinking about in our lab that might be more pervasive as we move
forward."
"Medicine is
going to change a lot in the next 10 to 50 years. We're going to be thinking
about these sort of questions a lot more, questions like what is your
microbiome actually doing, and is that impacting why you're in the doctor's
office," Whiteley said.
Comments
Post a Comment